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We study a dynamical model for an ecological network of many interacting species. We consider a
Malthus-Verhulst type of self-regulation mechanism. In the framework of the mean field theory we study the
nonlinear relaxation in three different cases:~a! towards the equilibrium state,~b! towards the absorbing
barrier,~c! at the critical point. We obtain asymptotic behavior in all different cases for the time average of the
process. The dynamical behavior of the system, in the limit of infinitely many interacting species, is investi-
gated in the stability and instability conditions and theoretical results are compared with numerical simulations.
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I. INTRODUCTION

In recent times some work has been devoted to the study
of population dynamics of a large number of species ran-
domly interacting each other@1#. The main motivation arises
from the study of complex ecosystems such as the idiotopic
network in the immune system, which works as a regulation
scheme for idiotopes recognition@2#. In a natural ecosystem,
typical mechanisms for self-regulation are the territorial
breeding requirement, the crowding effect caused by compe-
tition between the species for the same growth limiting re-
sources@3#, etc. We study anN-species generalization of the
usual Lotka-Volterra model with a Malthus-Verhulst model-
ization of the self-regulation processes. In this model the
species extinction is not prevented as in a similar model: the
Gompartz model, studied recently in an interesting paper by
Rieger @1#, where the function of the population density,
which describes the development of thei th species without
interacting with the other species, is a logarithmic one.
Moreover, in this model the stability domain is enlarged with
respect to the Gompartz model. In fact, the critical interac-
tion strengthJc , where the transition from stability to insta-
bility takes place, is very low~typically smaller than one!,
while in our model the interaction strength can assume any
value due to the value of the population saturation parameter
only. In our model we consider mean field interaction be-
tween the species, as a first step to get some insight into the
behavior of complex ecosystems, and a multiplicative noise
to take into account the influence of the environment~i.e.,
climate, disease, etc.!.

Nonmonotonic growth of fluctuations in a nonlinear re-
laxation during the decay towards the equilibrium state, in
the presence of the multiplicative noise, has been investi-
gated very recently in Ref.@4#, if the initial state is far away
or close to the absorbing barrier. The fluctuation behavior
has been easily obtained by means of a small-noise approxi-
mation.

In this paper we analyze the dynamical behavior and the

stability of the system by using methods developed in the
above-mentioned Ref.@4#. The species interaction is intro-
duced by a mean field approximation, i.e., assuming that the
growth parameter is proportional to the species average.

The deterministic behavior of our system shows a
stability-instability transition driven by the typical interac-
tion strengthJ and the saturation parameterg of the popu-
lation, which gives a divergency of the time integralM (t) in
a finite timetc .

The different modality of nonlinear relaxation is analyzed
in the stability region (g.J) and in the instability region
(J.g). For small noise intensity, whend.0 and the system
is in the instability region, the noise moves the system to-
wards the instability beforehand. Moreover, the system keeps
the memory of the initial state configuration, unless the dis-
tribution is extremely peaked around the mean value.

In the largen limit, with n being the species number, the
average of the species concentration has negligible fluctua-
tions. In this limit the stochastic evolution of the system can
be solved exactly. The solution is given by a somewhat in-
volved integral equation. The main result of this paper is to
introduce an approximation for the time integral of the aver-
age species concentration, which greatly simplifies both the
deterministic and the noise affected evolution of the system.
This approximation is valid in all cases in which there exists
a time range wherein the time integral of the average con-
centration becomes very large. This happens in a finite time
when the system is unstable or asymptotically if the system
is stable. When the system decays towards an absorbing bar-
rier, the time integral of the average species concentration
becomes asymptotically constant and as a consequence a dif-
ferent approximation scheme must be developed. We use the
above-mentioned approximation together with the small-
noise approximation@4#. We emphasize that in the previous
cases the approximation scheme takes into account the noise
influence in a nonperturbative way.

In this paper we investigate the nonlinear relaxation of the
system in three different regions of the control parameter
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d, which describes the development of thei th species with-
out interacting with other species.

~a! The region withd.0, where the decay occurs towards
the equilibrium state~equilibrium population! and where we
find a linear asymptotic behavior in time for the time integral
of the site population concentration averageM (t) in the sta-
bility region ~i.e., when the saturation effect of the resources
prevails over the growth parameter due to the interaction
between the populations!, and an exponential growth in the
instability region.

~b! The critical point d50, where we find a long tail
behavior forM (t) @namelyM (t);At#, when the nonlinear
term g is greater than the interaction strength between spe-
cies, like the behavior at the critical point in the zero dimen-
sional case @4#, and an interesting modified behavior
@M (t);AteAt# in the instability region, which is an interme-
diate one between the long tail behavior and the exponential
growth.

~c! The region withd,0, where the decay occurs towards
the absorbing barrier, corresponding to a hostile environ-
ment, and where the time integralM (t) becomes a constant
in the asymptotic regime in the stability region, because
there is no spontaneous growth~all the species are elimi-
nated!. When the system is unstable the growing behavior of
M (t) can be put in terms of exponential and error functions.

The paper is organized as follows. The model is described
in the next section~Sec. II!, where we give the integral equa-
tion for the time integral process and the mapping between
the linear process and the time integral of thei th population.
In this section we discuss also the deterministic behavior and
the instability transition.

In Sec. III we study the fluctuations in this ecological
model of interacting populations, in the asymptotic regime,
and the effect of the noise on the timetc . The different
behaviors of the deterministic potential associated with the
asymptotic evolution of the site population averagem(t)
give rise to a growing transition timetc from d.0 to
d,0. This means that when the interaction population pre-
vails over the resources, the presence of a hostile environ-
ment (d,0) causes a late start of the divergence of some
population.

In Sec. IV the analysis of the asymptotic regime for the
three different values of the parameterd is studied by means
of an approximation of the integral equation for the time
integral of the site averageM (t). The time integralM (t) is
weakly dependent on the initial state only ford>0 and
J,g. It is worth noting that we study the nonlinear relax-
ation in both the stability and instability regions by approxi-
mating directly the integral equation forM (t), unlike the
zero dimensional model previously studied@4#, where we
approximate the stochastic process.

Besides, we note that the asymptotic behaviors obtained
with the approximation of the integral equation forM (t) are
the same as those obtained with the process approximation of
@4#, in the stability region. In this section our theoretical
results are compared with numerical simulations of the origi-
nal stochastic differential equation~SDE!. Finally in Sec. V
we give the conclusions.

II. THE MODEL

We consider the Malthus-Verhulst stochastic model origi-
nally introduced to take into account a self-regulation

mechanism which prevents exponential growth of a single
population in the absence of interaction with other species.
Our starting point is the following stochastic differential
equation:

dw i5F S Jm1d1
e

2Dw i2gw i
2Gdt1Aew idwi , ~2.1!

where the parametersJ, g, and d identify the interaction
between species, the saturation effects, and the growth of the
population;wi is the Wiener process whose incrementdwi
satisfies the properties

^dwi~ t !&50; ^dwi~ t !dwj~ t8!&5d i jd~ t2t8!dt
~2.2!

and

m~ t !5
1

n(i w i~ t ! ~2.3!

is the site average. We adopt in Eq.~2.1! the Ito prescriptions
@5#. In this model the interaction among species is a symbi-
otic one forJ.0, i.e., the presence of other species increases
the growth rate of each species.

A. Stationary analysis and stability

The steady-state properties of the multiplicative process
of Eq. ~2.1! are well known for the zero dimensional model
@6# and give for the Fokker-Planck equation associated to the
SDE ~2.1! two different solutions. Asymptotic, steady state,
solutions exist only ifg.J. We obtain

P~w i !5d~w i ! for d!<0. ~2.4!

This is the case in which population extinction occurs,
and

P~w i !5Nw i
~2d!/e! 21expS 22gw i

e D for d!.0 ~2.5!

when populations survive, with

Ptot5)
i
P~w i !, ~2.6!

where d(w i) is the Dirac delta function,
N5(2g/e)2d!/e(g21)/G(2d!/e) is the normalization con-
stant, andd!5dg/(g2J).

The function defined by Eq.~2.5! shows another transition
besides that ford! 5 0 , when the most probable value is for
vanishing small population concentration. This is the well
known noise-induced phase transition@7#, which is charac-
terized by the qualitative change of the probability distribu-
tion profile for d! 5 e/2. In fact the most probable value is
given bywp 5 (d!2e/2)/(g2J).

Let us remark that because of the instability-stability tran-
sition of our system the steady-state distribution@Eq. ~2.5!# is
an effective one in the cased.0 andg.J ~stability region!,
but it is only a formal steady-state distribution in the insta-
bility case whereJ.g and consequentlyd,0. This means
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that any small disturbance with respect to the state of Eq.
~2.5! will grow exponentially in time.

The solution of Eq.~2.1! is given by

w i~ t !5
w i~0!eJM~ t !1dt1Aewi ~ t !

11gw i~0!zi~ t !
, ~2.7!

where

zi~ t !5E
0

t

dt8eJM~ t8!1dt81Aewi ~ t8! ~2.8!

and

M ~ t !5
1

n(i E
0

t

dt8w i~ t8!5E
0

t

dt8m~ t8!. ~2.9!

We note that the dynamical behavior of thei th population
depends on the time integral of the process
exp@JM(t)1dt1Aewi(t)# and the time integral process
M (t) of the site averagem(t), which is, in the largen limit,
a not fluctuating quantity.

In fact, the integral equation determiningM (t) is

M ~ t !5
1

ng(
i
lnS 11gw i~0!E

0

t

dt8eJM~ t8!1dt81Aewi ~ t8!D
5
1

g
^ ln@11gw i~0!zi~ t !#&, ~2.10!

where the angular brackets stand for the site average. It is
interesting to note that the time integral of thei th population
in the linear regime~i.e., in the early stages of evolution! is
given by

f i
L~ t !5E

0

t

dt8w i
L~ t8!5w i~0!zi~ t ! ~2.11!

and its knowledge completely determines the time evolution
of the time integral of the population processf i(t). In fact,
this process is simply related to the linear processzi(t) via
the mapping

f i~ t !5E
0

t

dt8w i~ t8!5
1

g
ln@11gf i

L~ t !#. ~2.12!

In other words the time evolution of the system has a
simpler interpretation in terms of the time integral process
f i(t) of Eq. ~2.12! and of its site averageM (t) @Eq. ~2.10!#.
Both quantities are given in terms of the linear process
f i
L(t). It is worth noting that Eqs.~2.10! and ~2.12! are

actually a system of stochastic integral equations. Moreover,
the only way to solve the stochastic integral equation~2.10!
involves a numerical procedure as complex as the numerical
solution of the original stochastic differential equation~2.1!.
The main effort of our work is to introduce suitable approxi-
mation in various regimes in the parameter space, which al-
lows us to obtain analytical results for the transient behavior.

B. Deterministic behavior and instability

We consider first the system evolution in the absence of
noise, outside (d.0 and d,0) and at the critical point
(d50). From Eq.~2.10!, neglecting the noise, we have the
following deterministic integral equation forM (t):

M ~ t !5
1

g K lnS 11gw i~0!E
0

t

dt8eJM~ t8!1dt8D L . ~2.13!

In the long time regime (t→` for J,g and t→tc for
J.g, wheretc is the stability-instability transition time! we
can approximate Eq.~2.13! as

gM ~ t !.^ ln„gw i~0!…&1 lnS E
0

t

dt8eJM~ t8!1dt8D . ~2.14!

By differentiating Eq.~2.14! we easily obtain a determin-
istic evolution equation forM (t),

M ~ t !.
1

~g2J!
lnF11S g2J

g D e^ ln„gw i ~0!…&E
0

t

dt8edt8G .
~2.15!

For a distribution of the initial conditionsw i(0) well
peaked around the mean valuem(0) @i.e., with
sw i (0)
2 /m(0)!1# we get

exp@^ ln„gw i~0!…&#.expF1 ln„gm~0!…2
sw i ~0!
2

2m~0!
G.gm~0!

~2.16!

and

M ~ t !5
1

~g2J!
lnS 11m~0!~g2J!E

0

t

dt8edt8D .
~2.17!

By differentiating Eq.~2.17! we obtain the following dif-
ferential equation for the site averagem(t):

ṁ~ t !5@d1~J2g!m#m. ~2.18!

This equation can be also obtained, in the linear determin-
istic regime, from Eq.~2.1!, if the time behaviors of the
species are nearly close tom(t).

For different values of the parameterd, when the satura-
tion parameterg is greater than the interaction parameter
J, the deterministic potential associated with Eq.~2.18!
causes the particle to approach the equilibrium statem` 5
d/(g2J) for d.0 or the absorbing barrierm50 for d<0
@see Fig. 1~a!#, while when the interaction between the spe-
cies is greater than the saturation effect (J.g), an instability
occurs.

It means that in a finite timetc , the time integral of the
site averageM (t) @Eqs.~2.15! and ~2.17!# grows to infinity
and the system becomes unstable. Ifm(0) is less than
udu/(J2g) and d,0 we have an absorbing barrier at
m50. This transition timetc depends on the parameters of
the dynamical system and on the initial population distribu-
tion according to the expressions
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tc5
1

d H lnF11S dg

~J2g! De2^ ln„gw i ~0!…&G J for dÞ0

~2.19!

and

tc5S g

~J2g! De2^ ln„gw i ~0!…& for d50. ~2.20!

In general from Eqs.~2.19! and~2.20! it is evident that the
system keeps the memory of the initial distribution of the
populations. However, for a peaked distribution of the initial
conditionsw i(0) @see Eq.~2.16!#, the system clearly loses
memory of the initial state and the transition times become

tc5
1

d
lnS 11

d

~J2g!m~0! D , dÞ0 ~2.21!

and

tc5
1

~J2g!m~0!
, d50. ~2.22!

It is worthwhile to note that in the instability region
(J.g) because of the different shapes of the potential of Eq.
~2.18! @see Fig. 1~b!#, the transition time increases from
d.0 to d,0 according to

~ tc!d,0.~ tc!d50.~ tc!d.0 . ~2.23!

For d.0 we have in the long time regime, from Eq.
~2.10!,

M ~ t !.
1

g
ln„zd~ t !…, ~2.24!

wherezd(t) is the deterministic limit of the process of Eq.
~2.8!,

zd~ t !5E
0

t

dt8eJM~ t8!1dt8. ~2.25!

We easily obtain the following asymptotic behavior:

M ~ t !.
dt

~g2J!
5m`t ~2.26!

with g.J ~stability region!. At the critical point (d50) we
obtain from Eq.~2.17! a logarithmic growth ofM (t),

M ~ t !5
1

~g2J!
ln@11m~0!~g2J!t#

.
1

~g2J!
@ ln„m~0!~g2J!…1 ln~ t !#. ~2.27!

Whend,0 we have a decay towards the absorbing bar-
rier and the time integralM (t) attains a constant value given
by

M`5
1

~g2J!
lnS 11

m~0!~g2J!

udu D , ~2.28!

while for J.g we get~for t→tc)

M ~ t !.
m~0!

udu ~12edtJ!. ~2.29!

In the next section we shall study fluctuations with respect
to the deterministic evolution due to the noise.

III. FLUCTUATIONS „d>0…

We consider now the role of the fluctuations due to the
noise on the population dynamics. We are able to discuss
fluctuations on the population concentration process for
d.0, both in the stable and unstable regions. In particular,
we calculate the asymptotic fluctuations of the time average
of the i th population,

f̄ i~ t !5
1

t E0
t

dt8w i~ t8!. ~3.1!

We can introduce a fluctuation processDf̄ i(t) with re-
spect to the site average of the time average process

FIG. 1. ~a! Schematic view of the potential of the deterministic
equation of the site averagem(t) for different values of the param-
eterd in the stability region (J,g). ~b! The same withJ.g ~in-
stability region!.
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Df̄ i~ t !5f̄ i~ t !2^f̄ i~ t !&. ~3.2!

As is evident from Eq.~2.9!, the time integral of the spa-
tial averageM (t), in the limit of infinitely many interacting
species, is the first moment of the time integral of the process
f i(t), therefore we have

Df̄ i~ t !5
1

gt
$ ln@11gw i~0!zi~ t !#2^ ln@11gw i~0!zi~ t !#&%.

~3.3!

When the relaxation takes place towards the equilibrium
population (d.0), we approximate the integral equation
~2.10!, using the following asymptotic equation:

E
0

t

dt8eJM~ t8!1dt81Aewi ~ t8!.eAewmaxiE
0

t

dt8eJM~ t8!1dt8

5eAewmaxi f ~ t !, ~3.4!

wherewmaxi
(t) 5 sup0,t8,twi(t8) @5#, and

f ~ t !5E
0

t

dt8eJM~ t8!1dt8. ~3.5!

This approximation@Eq. ~3.4!# is based on the consider-
ation that fordJ>0, M (t) will grow in time, thus the inte-
gral appearing in Eq.~3.4! is dominated by the large time
behavior of the integrand. As a consequence the time integral
M (t) is proportional to the processwmaxi

(t). In fact we have

M ~ t !.
1

g
^ ln@11gw i~0!eAewmaxi f ~ t !#&, ~3.6!

where f (t) is independent of the population index. In the
long time regime (t→` for J,g and t→tc for J.g) we
obtain

M ~ t !.
1

g
@^ ln„gw i~0!…&1Ae^wmaxi

~ t !&1 ln„f ~ t !…#.

~3.7!

So we can approximate Eq.~3.3! as

Df̄ i~ t !.
1

gt
$Ae@wmaxi

~ t !2^wmaxi
~ t !&#%. ~3.8!

The distribution of the processwmaxi
(t) is known@5#, and

we have

wmaxi
~ t !5 l iAt, ~3.9!

where eachl i is a random variable distributed according a
semi-Gaussiandistribution

P~ l i !5H 2~2p!21/2exp~2 l i
2/2! for l i>0,

0 for l i,0
~3.10!

with momentsln given by

ln5
~2!n/2

Ap
GS n11

2 D . ~3.11!

As a consequence the fluctuations of the time average
f̄ i(t) are asymptotically determined by the statistical prop-
erties of the processwmaxi

(t),

^D2f̄ i~ t !&5^f̄ i
2~ t !&2^f̄ i~ t !&

2

.J
1

~gt !2
$e@^wmaxi

2 ~ t !&2^wmaxi
~ t !&2#%

.S e~p22!

pg2 D 1t 1OS 1t2D , ~3.12!

which shows that we have smaller fluctuations as the system
approaches the equilibrium population distribution. We can
also find the effect of the noise on the time (tc), in which the
stability-instability transition occurs. Ford.0, using the
same approximated integral equation~3.4!, and after differ-
entiating and neglecting the low order termO(1/At), from
Eq. ~3.7!, for large time we get

gṀ ~ t !.exp@^ ln„gw i~0!…&#exp@~J2g!M ~ t !1dt1AeNAt#,
~3.13!

where^wmaxi
(t)&5AtN, andN5A2/p. This is a differential

equation equivalent to Eq.~3.7!, and it is useful to derive the
time tc . Solving Eq.~3.13! we obtain

M ~ t !.
1

~g2J!
lnF11S ~g2J!

g D e^ ln„gw i ~0!…&

3E
0

tc
dt8edt81AeNAt8G . ~3.14!

The system becomes unstable earlier owing to the noise,
as it is easily seen comparing Eq.~3.14! with ~2.15!. In fact,
from Eq. ~3.14! we obtain the instability timetc ,

tc.
1

d S H e

2pd
1 lnF11S dg

~J2g!
D e2^ ln„gw i ~0!…&G J 1/2

2A e

2pd D 2
.
1

d S H lnF11S dg

~J2g!
D e2^ ln„gw i ~0!…&G J 1/2

2A e

2pd D 2, ~3.15!

where the following approximation, valid for small noise in-
tensity, has been used:

eyc
2
.F11S dg

~J2g! De2^ ln„gw i ~0!…&Geyo2 ~3.16!

with yc5yo1Adtc andyo5Ae/(2pd).
A small noise moves the system towards the instability,

because the noise forces the system to sample more of the
available range in the parameter space than otherwise occurs
without noise.
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From Eq.~3.15! we can also see that the effect of differ-
ent species distributions of the initial conditions on the tran-
sition time tc is quite analogous to the deterministic case
previously discussed in Sec. II. Namely for values ofw i(0)
equally distributed around a given mean valuem(0) it is
easy to show that the timetc increases because the factor
e2^ ln„gw i (0)…& is greater thane2 ln„gm(0)…, when all the species
have the same initial condition equal to the mean value
m(0). This means that the system has not enough time to
lose memory of the initial state, when it is in the instability
region. However, for a peaked distribution of the initial con-
ditionsw i(0) with m(0)51 @i.e., withsw i (0)

2 /m(0)!1#, the

system clearly loses memory of the initial state@see Eq.
~2.16!# and the transition time becomes

tc.
1

d H F lnS 11
d

~J2g!
D G1/22A e

2pdJ
2

. ~3.17!

IV. ASYMPTOTIC REGIME

We consider now the asymptotic behavior of the time
integral of the site averageM (t) for different values of the
growth parameterd in both stability and instability regions.

A. Relaxation towards the equilibrium state

For d.0 using the approximation~3.4! and Eq.~3.13! we
get the asymptotic solution of Eq.~3.6!,

M ~ t !.
1

~g2J!
ln@11F~ t !#, ~4.1!

where

F~ t !5G„w i~0!…E
0

t

dt8edt81AeNAt8 ~4.2!

and

G„w i~0!…5S ~g2J!

g De^ ln„gw i ~0!…&. ~4.3!

Explicit expression forM (t) in the asymptotic regime is
given in terms of complex error functions,

M ~ t !.S 1

~g2J!
D lnH 11S G„w i~0!…

d D Fedt1A~2e/p! t21

2
Ap

i
yoe

2yo
2
@erf„i ~Adt1yo!…2erf~ iyo!#G J

~4.4!

with yo5Ae/(2pd). In terms of series expansions we obtain

M ~ t !.S 1

~g2J!D lnH 11S e2yo
2
G„w i~0!…

d D (
k50

` S 1k! D F y2kS 1
2

2yoy

2k11D 2~yo!
2kS 12

2yo
2

2k11D G J , ~4.5!

with y5Adt1yo .

Case I. Stability region J<g

In this region the asymptotic behavior is characterized by
a divergence of the time integralM (t) when the time goes to
infinity. We can approximate Eq.~4.1! as follows:

M ~ t !.
1

g2J F ^ ln„gw i~0!…&1 lnS ~g2J!

g D
1 lnS E

0

t

dt8edt81A~2e!/pAt8D G ~4.6!

and using the mean value theorem to estimate the integral in
Eq. ~4.6! we have

M ~ t !.S d

g2JD t1 A~2e!/pAt
~g2J!

1
ln„tb~ t !…

~g2J!

1
1

~g2J!
F ^ ln„gw i~0!…&1 lnS g2J

g D G
.S 1

g2JD Fdt1A2et

p
1 ln„tb~ t !…1 ln~g2J!G ,

~4.7!

where

tb~ t !5

E
0

t

dt8edt81A~2e!/pAt8

edt1A~2e!/pAt
~4.8!

is a function which diverges less than a linear function of
time, and where we usedsw i (0)

2 !1 and Eq.~2.16! to calcu-

late^ ln„gw i(0)…&. We see that, as expected, the system loses
memory of the initial state. We obtain the same asymptotic
behavior apart from the additive constant
„1/(g2J)…ln„(g2J)/g… if we approximate directly the pro-
cessz(t) of Eq. ~2.8! by

z~ t !.a~ t !eJM~ t !1dtAewmax~ t !, ~4.9!

where a(t) is a function which, liketb(t), diverges less
than a linear function of time@4#. It is worthwhile to note
that in the limit of the vanishing interaction strengthJ we
recover the asymptotic constant value of the first moment of
the multiplicative stochastic process, studied in Ref.@4#,
when the relaxation takes place towards the equilibrium
state. Moreover, here we obtain the square root long time
behavior as a preasymptotic term.

The main role of the fluctuations on the time average of
the site averaged population process is related to the asymp-
totic decay towards the steady state with a square root long
time tail. In the same asymptotic region the dispersion of the
same quantity can be neglected because, according to Eq.
~3.12!, it vanishes with an inverse time law.

Analytical results obtained in the present approximation
scheme are compared with numerical solutions of the Lange-
vin equation~2.1!, usingn51000 species, in Figs. 2–7. In
Fig. 2 we see the time behavior of the first moment of the
site averagem(t) in the transient, obtained by time deriva-
tion from Eq.~4.7!, for two different values of the nonlinear
parameterg. A growth of g means an increasing saturation
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effect and the system settles down beforehand in the station-
ary regime. In Fig. 3 we report the transient behavior of the
first moment of the time average ofm(t). We note that our
approximation scheme works well for almost the full tran-
sient regime for high values ofg. Figure 4 shows the effect
of different initial distributions on the transient behavior of
the site averagem(t) and its time averageM (t)/t. The effect
of a large variance of the initial distribution of the species
(sw i (0)

2 51) is to reduce only in the short time regime the

values ofm(t) because of the term̂ln„gw i(0)…&, while the
time averageM (t)/t keeps the memory of the initial condi-
tions for all the transient. This is due to the memory effect of
the integral operator@see Eq.~2.9!#.

Case II. Instability region J>g

In this region of parameters we note thatF(t), defined in
Eq. ~4.2!, in a finite timetc becomes equal to21. Therefore
for times smaller thantc , F(t) is a small quantity. Particu-
larly we have

FIG. 2. Transient behavior of the first moment of the site aver-
agem(t) for two values of the parameterg in the stability region
(J,g): ~a! g51.2; ~b! g53. The solid lines are the results of the
theory. The dotted lines are the results of numerical integration of
the Langevin equation~2.1!. As in Figs. 3, 4, and 5, data are ob-
tained starting with the following parameter settings:
d50.095.0, J51, e50.01,m(0)51, sw i (0)

2 50.01. The number

of the species isn51000.

FIG. 3. Transient behavior of the first moment of the time av-
erage ofm(t) in the stability region (g53). The solid line is the
result of the theory.

FIG. 4. Plots ofm(t) ~a! andM (t)/t ~b! as a function of time for
two values of the variance of the Gaussian initial distribution in the
stability region (g53). Namely, ~a! sw i (0)

2 50.01 ~squares!; ~b!

sw i (0)
2 51 ~dots!.
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JuF~ t !u<1 for t<tc . ~4.10!

Because of the time cutofftc we can approximate the
integral in Eq.~4.2! obtaining

M ~ t !,
1

~g2J!
lnF12A~ tc!E

0

t

dt8edt8G , ~4.11!

where

A~ tc!5S J2g

g
D exp@^ ln„gw i~0!…&1AeNAtc#

.S J2g

g
D expF ln„gm~0!…2

sw i ~0!
2

2m~0!
1A2e

p
AtcG .

~4.12!

Because of Eq.~4.10!, from Eq. ~4.11! we have

S A~ tc!e
dt

d1A~ tc!
D,1. ~4.13!

Now we obtain

M ~ t !.
ln~d!

~J2g!
1

1

~g2J!
lnFdS 11

A~ tc!

d D G1
1

~g2J!
lnF1

2S A~ tc!e
dt

d1A~ tc!
D G , ~4.14!

and for the leading term~for t,tc)

M ~ t !.S A~ tc!

~J2g!@d1A~ tc!#
Dedt2

lnS 11
A~ tc!

d D
~J2g!

.

~4.15!

That is an exponential growth for the site population av-
erageM (t). The plot ofM (t)/t ~the solid line is the theo-

retical result! compared with simulation of Eq.~2.1! ~dotted
line! for this region of parameters is reported in Fig. 5.

B. Relaxation at the critical point

For d50, i.e., with a zero growth of the population, we
can use again the approximation~3.4! obtaining as asymp-
totic solution forM (t)

M ~ t !.
1

~g2J!
lnF11S g2J

g D e^ ln„gw i ~0!…&E
0

t

dt8eAeNAt8G .
~4.16!

For the stability region (J,g), neglecting low order
terms and using Eq.~2.16!, we get

M ~ t !.S 1

g2JD F SA2e

p DAt1 lnS At
A~2e!/p

D
1^ ln„gw i~0!…&1 lnS 2~g2J!

g D G
.S 1

g2JD F SA2e

p DAt1 lnS At
A~2e!/p

D
1 ln„gw̄~0!…2

sw i ~0!
2

2w̄~0!
1 lnS 2~g2J!

g D G ,
~4.17!

which is a result consistent with the zero dimensional case,
previously studied@4#. Besides we note that the dominant
term in Eq.~4.17! can be obtained using the approximation
~4.9! @4#.

While for the instability region (J.g) we have

M ~ t !.S 1

g2JD lnF11S p~g2J!

ge D e^ ln„gw i ~0!…&

3S 11SA2e

p
At21D eA~2e/p!AtD G , ~4.18!

and expanding the logarithm we obtain as a dominant behav-
ior ~for t,tc)

M ~ t !.H S pe^ ln„gw i ~0!…&

eg D F11SA2e

p
At21D eA~2e/p!AtG J ,

~4.19!

which is an interesting behavior for the time averaged pro-
cessM (t)/t, in fact we have a long time tail behavior
(t21/2 dependence! modified by eAt. Around the stability-
instability transition the system goes from a purely long time
tail behavior to a new long time regime modified byeAt. In
Fig. 6 we report the transient behaviors ofM (t)/t at the
critical point.

C. Relaxation towards the absorbing barrier

The relaxation now is characterized by a constant asymp-
totic value for the time integralM (t) as the system ap-
proaches the absorbing barrier, i.e.,J,g. In order to obtain

FIG. 5. Transient behavior of the first moment of the time av-
erage ofm(t) for g50.9 ~instability regionJ.g). The solid line is
the result of the theory.
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the preasymptotic behavior in this regime, we approximate
Eq. ~2.10!, taking into account thatM (t) is asymptotically
constant. Therefore the approximation

E
0

t

dt8eJM~ t8!1dt81Aewi ~ t8!.eJM~ t !E
0

t

dt8edt81Aewi ~ t8!

~4.20!

is meaningful. Substituting Eq.~4.20! in Eq. ~2.10! we obtain

M ~ t !.
1

gn(i ln@11gw i~0!eJM~ t !z̄i~ t !#, ~4.21!

where the processz̄i(t) is given by

z̄i~ t !5E
0

t

dt8edt81Aewi ~ t8!. ~4.22!

Because of the expected small fluctuations for the time
integral M (t) we can use here the small noise expansion
approximation used for a zero dimensional model recently

studied @4#. We can write for the processz̄i(t), using the
translation invariance properties of the Wiener process, the
following multiplicative SDE:

dz̄i~ t !5F S d1
e

2D z̄i11Gdt1Ae z̄idwi . ~4.23!

Therefore a mapping is introduced,

v i~ t !5 ln„z̄i~ t !…, ~4.24!

obtaining an additive noise processv(t). In fact, from Eq.
~4.23! and using Ito’s rules of calculus we have the following
SDE:

dv i5~d1e2v i ~ t !!dt1Aedwi . ~4.25!

We separate therefore the processv i into a deterministic
part vd and a small fluctuating partṽ i obeying an additive
SDE,

dṽ i52e2vd~ t !ṽ idt1Aedwi , ~4.26!

where

vd~ t !5 lnS 1d ~edt21! D ~4.27!

and

^ṽ i&50, s ṽ i

2 ~ t !52
e

2d
~12e2dt!. ~4.28!

With this approximation Eq.~4.21! becomes

M ~ t !.
1

g
^ ln@11gw i~0!eJM~ t !z̄d~ t !~11 ṽ i !#&

.
1

g
^ ln@gw i~0!eJM~ t !z̄d~ t !~11 ṽ i !#&, ~4.29!

where z̄d(t) is the deterministic part of the processz̄i(t).
Therefore because of the zero mean of the processṽ i , and
neglecting all moments of order higher than 2~small noise
expansion! we obtain forM (t)

M ~ t !.S 1

g2JD @^ ln„gw i~0!…&1^ ln„11 ṽ i…&1 ln„z̄d~ t !…#

.S 1

g2JD F ^ ln„gw i~0!…&1 lnS 1d ~edt21! D
1

e

4d
~12e2dt!G . ~4.30!

From this equation we easily obtain the constant asymp-
totic valueM` of the time integralM (t),

M`.S 1

g2JD F ^ ln„gw i~0!…&1 lnS 1

udu D1
e

4JdG .
~4.31!

FIG. 6. Plot of the first moment of the site averagem(t) as a
function of time at the critical pointd50. ~a! Stability region
(g53); ~b! instability region (g50.9). The other parameters are
the same as Fig. 2. The solid lines are the results of the theory.
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The plot ofM (t)/t is given in Fig. 7~a!, where we see that
our approximation scheme@Eqs. ~4.20! and ~4.29!# works
well.

Finally we consider the instability region (J.g), where
in the long time regime@ t→tc andM (t)→`# we can apply
the asymptotic Eq.~3.4!, obtaining

M ~ t !.S 1

g2JD ln†J„12Ḡ@w i~0!#$e2yo
2
2e2~Audut2yo!2

1Apyo@erf~Audut2yo!1erf~yo!#%…‡,
~4.32!

whereyo5Ae/(2pudu), erf is the error function, and

Ḡ„w i~0!…5S ~J2g!ee/2pudu

gudu De^ ln„gw i ~0!…&. ~4.33!

In Fig. 7~b! the asymptotic behavior~solid line! of the
time average ofm(t) given by Eq.~4.32! is compared with
the numerical simulation~dotted line! of Eq. ~2.1!. We see

that the approximation given by Eq.~3.4! works not as well
as at the initial times. This is because to obtain Eq.~4.32! we
perform an integration between the initial timet50 and the
time t of the asymptotic equation~3.13!, thus extrapolating
the asymptotic solution back to the initial time. In other
words, we force the asymptotic behavior to cross the initial
condition and as a consequence we obtain a worse behavior
as the timet approaches the transition valuetc in this param-
eter region.

V. CONCLUSIONS

We have studied a stochastic model of interacting popu-
lations in the limit of a large number of interacting species.
We have introduced an approximation for the time integral
of the average species concentration which allows us to ob-
tain analytical results for the transient behavior and the as-
ymptotic statistical properties of the time average of thei th
population process.

An interesting feature concerning the population dynam-
ics is that the statistical properties of the time average of
the i th population process are determined asymptotically
from the statistical properties of the processwmax(t)
5sup0,t8,tw(t8) @5#, wherew is the Wiener process.

Our approximation scheme works for all cases studied
@see Figs. 2–7~a!#. Results are less accurate in the instability
region for the transient behavior whend,0 @Fig. 7~b!#, as
compared with all other cases. This is because our approxi-
mation, which is accurate in the asymptotic regime (t→tc),
needs also an extrapolation back to the initial time. This
extrapolation is clearly less accurate when theM (t) has a
large slope variation in a finite time. A possible improvement
should be achieved with a matching procedure between the
asymptotic and a perturbative solution of Eq.~2.1! at an
intermediate time.

On the other hand, in all the other different regimes of
nonlinear relaxation our theoretical results reproduce not
only the asymptotic behavior but almost all the transient evo-
lution of the system. At the critical point we see that around
the stability-instability transition, the system goes from a
purely long time tail behavior for the time averaged process
M (t)/t to a new long time regime modified byeAt. For small
noise intensity the transition time increases fromd.0 to
d,0 according to the same relation found for the determin-
istic evolution of the system

~ tc!d,0.~ tc!d50.~ tc!d.0 with eÞ0, ~5.1!

as we can see from Figs. 5, 6~b!, and 7~b!.
We investigated also the effect of a large variance of the

Gaussian initial distribution of the populations~namely
sw i (0)
2 51) on the transient behavior of the site average

m(t) and of the time averageM (t)/t. We found that, apart
from a short time regime wherem(t) is lower than the be-
havior obtained with the numerical solution of Eq.~2.1!, the
relaxation converges quickly to the right behavior. In the
short time regimem(t) keeps the memory of the initial dis-
tribution because of the term̂ln„gw i(0)…&. In fact the spe-
cies with w i(0),m(0)51 makes^ ln„gw i(0)…& and there-
fore m(t)lower. On the other hand, the behavior of the

FIG. 7. Relaxation towards the absorbing barrier
(d520.01,0): ~a! stability region (g53); ~b! instability region
(g50.9). The other parameters are the same as Fig. 2. The solid
lines are the results of the theory.
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processM (t)/t is lowered for all the transient. The process
M (t)/t keeps the memory of the initial distribution because
of the integral operator@see Eq.~2.9!#.

A field of further investigation is the natural extension of
this work to the study of populations dynamics withran-
domly interacting species.
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